Gold(I)-Catalyzed endo-Selective Intramolecular α-Alkenylation of β-Yne-Furans: Synthesis of Seven-Membered-Ring-Fused Furans and DFT Calculations

Zhe Dong, Cheng-Hang Liu, Yi Wang, Mu Lin, and Zhi-Xiang Yu College of Chemistry, Peking University, Beijing (China) DOI: 10.1002/anie.201306965

Joseph Salamoun

Wipf Group

Current Lit. 12/07/13 Page 1 of 13

12/8/2013

Earlier Examples of Gold Catalysis: The Golden Years

Examples of Current Surge in Gold Catalysis: The Gold Rush

Joe Salamoun @ Wipf Group

TIPSÓ

63 - 95%

Page 3 of 13

12/8/2013

Interest in Cyclization with Yne-Furan: A Golden Opportunity

Referenced fin title paper.

Literature Examples of Yne-Furan Cyclizations:

OL 2003, 5, 1055.

Precedence for Gold with Furans and Indoles: A Gold Mine

Angew. Chem. Int. Ed. 2006, 45, 1105.

Chem. Eur. J. 2007, 13, 1358.

Gold Catalyzed Reactions: Going for the Gold

Screening of Catalysts and Success with Gold: Striking Gold

	Ts	sN Me Me TsN O	tBu tBu►P-Au-N	CMe SbF ₆ -	
entry	solvent	catalyst	temp.	time (h)	yield
1	DCM	TfOH	rt	12	Mix
2	DCM	AgSbF ₆	rt	24	Decomp
3	DCM	$BF_3 \cdot Et_2O$	rt	24	Decomp
4	toluene	PtCl ₂	70 °C	24	28%
5	DCM	AuCl ₃	rt	10	Low convers.
6	DCM	Au(PPh ₃)Cl + AgSbF ₆	rt	1	Trace
7	DCM	Au(iPr)Cl + AgSbF ₆	rt	0.3	69%
8	DCM	Au[P(OPh- <i>t</i> -Bu-2,4) ₃]Cl + AgSbF ₆	rt	0.5	35%
9	DCE	A	rt	0.3	74%
10	DCM	A	rt	1	60%
11	MeCN	A	70 °C	24	Trace
12	toluene	A	rt	4	87%
13	THF	A	rt	6	79%
14 Joe Salam	DME oun @ Wipf Group	A Page 7 of 13	rt	3	90% <u>12/8/20</u> 713

Extension of Scope: More Pots of Gold

DFT and NPA Studies, Insight into Selectivity: The Golden Path

Chem. Rev. **2011**, 112/8/26/513.

Conclusion: Worth its Weight in Gold?

- Transformations are interesting and potentially useful in natural product synthesis.
- The yields are good but a heteroatom is needed in the tether unless a carbonyl is placed next to alkyne.
- Tunable strategy allows for synthesis of appropriate ring size.
- DFT and NPA provide insight into the mechanism.

Commentary: All that Glitters is not Gold?

- Even though gold was not the focus of the paper, it would be useful to get insight into why/if gold is superior to other metals. It remains unclear what gold's specific impact is (relative to other catalysts), especially since tuning the ring size is not related to the catalyst.
- It would be of great interest if they can evolve the methodology so that the catalyst can control ring size without limitation on the alkyne substitution (Au^{II} v. Au^{III}?).